Introductory Nanoelectronics
-10%
portes grátis
Introductory Nanoelectronics
Physical Theory and Device Analysis
Khanna, Vinod Kumar
Taylor & Francis Inc
07/2020
410
Dura
Inglês
9780815384267
15 a 20 dias
1300
Descrição não disponível.
Nanoelectronics and Mesoscopic Physics. Part I: Quantum Mechanics for Nanoelectronics. Origins of Quantum Theory. The Schrodinger Wave Equation. Operator Methods and Postulates of Quantum Mechanics. Particle-in-a-Box and Related Problems. The Hydrogen Atom. Part II: Condensed Matter Physics for Nanoelectronics. Drude-Lorentz Free Electron Model. Sommerfield Free Electron Fermi Gas Model. Kronig-Penney Periodic Potential Model. Part III: Electron Behavior in Nanostructures. Quantum Confinement and Electronic Structure of Quantum Dots. Electrons in Quantum Wires and Landauer-Buettiker Formalism. Electrons in Quantum Wells. Part IV: Green's Function Method for Nanoelectronic Device Modeling. Dirac Delta and Green's Function Preliminaries. Method of Finite Differences and Self Energy of the Leads. Non-Equilibrium Green's Function (NEGF) Formalism. Part V: Fabrication and Characterization of Nanostructures. Fabrication Tools. Characterization Facilities. Part VI: Exemplar Nanoelectronic Devices. Resonant Tunneling Diodes. Nanoscale MOSFETs and Similar Devices. High-Electron Mobility Transistors. Single Electron Transistors. Heterostructure Optoelectronic Devices. Index
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Wave Function;Green's Function;nanoscale electronics;Energy Band Diagram;microelectronics;Drude Model;solid-state physics;Retarded Green's Function;quantum dots;Depletion Region;non-equilibrium Green's function;Electron Beam Lithography;nanoelectronic devices;Quantum Confinement;quantum-confined systems;Hamiltonian Operator;Schrodinger's Equation;Bandgap Material;Short Channel MOSFET;Free Electron Gas;Schrodinger Equation;Quantum Wells;RTD;Finite Differences Method;Electron Affinity;CNT FET;Exciton Bohr Radius;Advanced Green's Function;Nanowire FET;Drain Source Current;Tunneling Current
Nanoelectronics and Mesoscopic Physics. Part I: Quantum Mechanics for Nanoelectronics. Origins of Quantum Theory. The Schrodinger Wave Equation. Operator Methods and Postulates of Quantum Mechanics. Particle-in-a-Box and Related Problems. The Hydrogen Atom. Part II: Condensed Matter Physics for Nanoelectronics. Drude-Lorentz Free Electron Model. Sommerfield Free Electron Fermi Gas Model. Kronig-Penney Periodic Potential Model. Part III: Electron Behavior in Nanostructures. Quantum Confinement and Electronic Structure of Quantum Dots. Electrons in Quantum Wires and Landauer-Buettiker Formalism. Electrons in Quantum Wells. Part IV: Green's Function Method for Nanoelectronic Device Modeling. Dirac Delta and Green's Function Preliminaries. Method of Finite Differences and Self Energy of the Leads. Non-Equilibrium Green's Function (NEGF) Formalism. Part V: Fabrication and Characterization of Nanostructures. Fabrication Tools. Characterization Facilities. Part VI: Exemplar Nanoelectronic Devices. Resonant Tunneling Diodes. Nanoscale MOSFETs and Similar Devices. High-Electron Mobility Transistors. Single Electron Transistors. Heterostructure Optoelectronic Devices. Index
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Wave Function;Green's Function;nanoscale electronics;Energy Band Diagram;microelectronics;Drude Model;solid-state physics;Retarded Green's Function;quantum dots;Depletion Region;non-equilibrium Green's function;Electron Beam Lithography;nanoelectronic devices;Quantum Confinement;quantum-confined systems;Hamiltonian Operator;Schrodinger's Equation;Bandgap Material;Short Channel MOSFET;Free Electron Gas;Schrodinger Equation;Quantum Wells;RTD;Finite Differences Method;Electron Affinity;CNT FET;Exciton Bohr Radius;Advanced Green's Function;Nanowire FET;Drain Source Current;Tunneling Current